13,681 research outputs found

    Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30-xGex

    Full text link
    We present a systematic study of thermal conductivity, specific heat, electrical resistivity, thermopower and x-ray diffraction measurements performed on single-crystalline samples of the pseudoquaternary type-I clathrate system Sr8Ga16Si30-xGex, in the full range of 0 < x < 30. All the samples show metallic behavior with n-type majority carriers. However, the thermal conductivity and specific heat strongly depend on x. Upon increasing x from 0 to 30, the lattice parameter increases by 3%, from 10.446 to 10.726 A, and the localized vibrational energies of the Sr guest ions in the tetrakaidekahedron (dodecahedron) cages decrease from 59 (120) K to 35 (90) K. Furthermore, the lattice thermal conductivity at low temperatures is largely suppressed. In fact, a crystalline peak found at 15 K for x = 0 gradually decreases and disappears for x > 20, evolving into the anomalous glass-like behavior observed for x = 30. It is found that the increase of the free space for the Sr guest motion directly correlates with a continuous transition from on-center harmonic vibration to off-center anharmonic vibration, with consequent increase in the coupling strength between the guest's low-energy modes and the cage's acoustic phonon modes.Comment: 7 pages, 7 figures, submitted to PR

    Star formation history in the solar neighborhood: the link between stars and cosmology

    Full text link
    Using a cosmological galactic evolutionary approach to model the Milky Way, we calculate the star formation history (SFH) of the solar neighborhood. The good agreement we obtain with the observational inferences suggests that our physical model describes accurately the long term/large spatial trends of the local and global Milky Way SFH. In this model, star formation is triggered by disk gravitational instabilities and self-regulated by an energy balance in the ISM. The drivers of the SFH are the cosmological gas infall rate and the gas surface density determined by the primordial spin parameter. A LambdaCDM cosmology was used throughout.Comment: 8 pages, uses kluwer.cls. Invited talk, to appear in "New Quests in Stellar Astrophysics: The link between Stars and Cosmology", eds. M. Chavez, A. Bressan, A. Buzzoni & D. Mayya, Kluwer Academic Publisher

    High-Energy Proton-Proton Forward Scattering and Derivative Analyticity Relations

    Get PDF
    We present the results of several parametrizations to two different ensemble of data on pppp total cross sections σtotpp\sigma_{tot}^{pp} at the highest center-of-mass energies (including cosmic-ray information). The results are statistically consistent with two distinct scenarios at high energies. From one ensemble the prediction for the LHC (s=14\sqrt s = 14 TeV) is σtotpp=113±5\sigma_{tot}^{pp} = 113 \pm 5 mb and from the other, σtotpp=140±7\sigma_{tot}^{pp}=140 \pm 7 mb. From each parametrization, and making use of derivative analyticity relations (DAR), we determine ρ(s)\rho(s) (ratio between the forward real and imaginary parts of the elastic scattering amplitude). A discussion on the optimization of the DAR in terms of a free parameter is also presented.In all cases good descriptions of the experimental data are obtained.Comment: One formula added, one unit changed, small misprints corrected, final version to be published in Brazilian Journal of Physics; 13 pages, 8 figures, aps-revte
    corecore